A novel post-translational modification of yeast elongation factor 1A. Methylesterification at the C terminus.
نویسندگان
چکیده
Protein methylation reactions can play important roles in cell physiology. After labeling intact Saccharomyces cerevisiae cells with S-adenosyl-l-[methyl-(3)H]methionine, we identified a major methylated 49-kDa polypeptide containing [(3)H]methyl groups in two distinct types of linkages. Peptide sequence analysis of the purified methylated protein revealed that it is eukaryotic elongation factor 1A (eEF1A, formerly EF-1alpha), the protein that forms a complex with GTP and aminoacyl-tRNAs for binding to the ribosomal A site during protein translation. Previous studies have shown that eEF1A is methylated on several internal lysine residues to give mono-, di-, and tri-N-epsilon-methyl-lysine derivatives. We confirm this finding but also detect methylation that is released as volatile methyl groups after base hydrolysis, characteristic of ester linkages. In cycloheximide-treated cells, methyl esterified eEF1A was detected largely in the ribosome and polysome fractions; little or no methylated protein was found in the soluble fraction. Because the base-labile, volatile [methyl-(3)H]radioactivity of eEF1A could be released by trypsin treatment but not by carboxypeptidase Y or chymotrypsin treatment, we suggest that the methyl ester is present on the alpha-carboxyl group of its C-terminal lysine residue. From the results of pulse-chase experiments using radiolabeled intact yeast cells, we find that the N-methylated lysine residues of eEF1A are stable over 4 h, whereas the eEF1A carboxyl methyl ester has a half-life of less than 10 min. The rapid turnover of the methyl ester suggests that the methylation/demethylation of eEF1A at the C-terminal carboxyl group may represent a novel mode of regulation of the activity of this protein in yeast.
منابع مشابه
Mitotic modulation of translation elongation factor 1 leads to hindered tRNA delivery to ribosomes.
Translation elongation in eukaryotes is mediated by the concerted actions of elongation factor 1A (eEF1A), which delivers aminoacylated tRNA to the ribosome; elongation factor 1B (eEF1B) complex, which catalyzes the exchange of GDP to GTP on eEF1A; and eEF2, which facilitates ribosomal translocation. Here we present evidence in support of a novel mode of translation regulation by hindered tRNA ...
متن کاملEtoposide phosphate enhances the acetylation level of translation elongation factor 1A in PLC5 cells.
Translation elongation factor 1A (eEF1A) is a factor critically involved in the process of protein synthesis. The activity of eEF1A has been shown by several studies to be regulated by post-translational modifications such as phosphorylation and dephosphorylation. However, until now less research has focused on other post-translational modifications of eEF1A, especially acetylation. In this rep...
متن کاملEukaryotic Translation Elongation Factor 1A (eEF1A) Domain I from S. cerevisiae Is Required but Not Sufficient for Inter-Species Complementation
Ethanolamine phosphoglycerol (EPG) is a protein modification attached exclusively to eukaryotic elongation factor 1A (eEF1A). In mammals and plants, EPG is linked to conserved glutamate residues located in eEF1A domains II and III, whereas in the unicellular eukaryote Trypanosoma brucei, only domain III is modified by a single EPG. A biosynthetic precursor of EPG and structural requirements for...
متن کاملThe RACK1 signal anchor protein from Trypanosoma brucei associates with eukaryotic elongation factor 1A: a role for translational control in cytokinesis
RACK1 is a WD-repeat protein that forms signal complexes at appropriate locations in the cell. RACK1 homologues are core components of ribosomes from yeast, plants and mammals. In contrast, a cryo-EM analysis of trypanosome ribosomes failed to detect RACK1, thus eliminating an important translational regulatory mechanism. Here we report that TbRACK1 from Trypanosoma brucei associates with eukar...
متن کاملUnique classes of mutations in the Saccharomyces cerevisiae G-protein translation elongation factor 1A suppress the requirement for guanine nucleotide exchange.
G-proteins play critical roles in many cellular processes and are regulated by accessory proteins that modulate the nucleotide-bound state. Such proteins, including eukaryotic translation elongation factor 1A (eEF1A), are frequently reactivated by guanine nucleotide exchange factors (GEFs). In the yeast Saccharomyces cerevisiae, only the catalytic subunit of the GEF complex, eEF1Balpha, is esse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 47 شماره
صفحات -
تاریخ انتشار 2000